New permutation codes using Hadamard unscrambling

نویسندگان

  • Manfred R. Schroeder
  • N. J. A. Sloane
چکیده

Another viewpoint is presented on the derivation of theBerlekamp-Massey algorithm. Our approach differs from previous ones inthe following manner. The properties of the shortest linear feedback shiftregister that generates a given sequence are first derived without referenceto the Berlekamp-Massey algorithm. The Berlekamp-Massey algorithm isthen derived using these properties. Our approach has the advantage ofbeing easier to understand.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the permutation decoding for binary linear and Z4-linear Hadamard codes

Permutation decoding is a technique, introduced in [3] by MacWilliams, that strongly depends on the existence of special subsets, called PD-sets, of the permutation automorphism group PAut(C) of a linear code C. In [2], it is shown how to find s-PD-sets of minimum size s + 1 for partial permutation decoding for the binary simplex code Sm of length 2 − 1, for all m ≥ 4 and 1 < s ≤ ⌊ 2−m−1 m ⌋ . ...

متن کامل

Partial permutation decoding for binary Hadamard codes

Roland D. Barrolleta – Partial permutation decoding for binary Hadamard codes 1 Johann A. Briffa – Codes for Synchronization Error Correction 2 Wouter Castryck – Some two-torsion issues for curves in characteristic two 4 Gábor Fodor – Fingerprinting codes and their limits 5 E. Suárez-Canedo – About a class of Hadamard Propelinear Codes 6 Andrea Švob – On some transitive combinatorial structures...

متن کامل

Partial permutation decoding for binary linear Hadamard codes

Permutation decoding is a technique which involves finding a subset S, called PDset, of the permutation automorphism group PAut(C) of a code C in order to assist in decoding. A method to obtain s-PD-sets of size s + 1 for partial permutation decoding for the binary linear Hadamard codes Hm of length 2 m, for all m ≥ 4 and 1 < s ≤ b(2m −m− 1)/(1 + m)c, is described. Moreover, a recursive constru...

متن کامل

Partial permutation decoding for binary linear and Z4-linear Hadamard codes

Permutation decoding is a technique which involves finding a subset S, called PD-set, of the permutation automorphism group of a code C in order to assist in decoding. A method to obtain s-PD-sets of minimum size s + 1 for partial permutation decoding for binary linear Hadamard codes Hm of length 2 , for all m ≥ 4 and 1 < s ≤ ⌊ 2−m−1 1+m ⌋ , is described. Moreover, a recursive construction to o...

متن کامل

PD-sets for Z4-linear codes: Hadamard and Kerdock codes

Permutation decoding is a technique that strongly depends on the existence of a special subset, called PD-set, of the permutation automorphism group of a code. In this paper, a general criterion to obtain s-PD-sets of size s + 1, which enable correction up to s errors, for Z4-linear codes is provided. Furthermore, some explicit constructions of s-PD-sets of size s+1 for important families of (n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 33  شماره 

صفحات  -

تاریخ انتشار 1987